skip to main content


Search for: All records

Creators/Authors contains: "ZHAO, YUFEI"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We study quantitative relationships between the triangle removal lemma and several of its variants. One such variant, which we call the triangle-free lemma , states that for each $\epsilon>0$ there exists M such that every triangle-free graph G has an $\epsilon$ -approximate homomorphism to a triangle-free graph F on at most M vertices (here an $\epsilon$ -approximate homomorphism is a map $V(G) \to V(F)$ where all but at most $\epsilon \left\lvert{V(G)}\right\rvert^2$ edges of G are mapped to edges of F ). One consequence of our results is that the least possible M in the triangle-free lemma grows faster than exponential in any polynomial in $\epsilon^{-1}$ . We also prove more general results for arbitrary graphs, as well as arithmetic analogues over finite fields, where the bounds are close to optimal. 
    more » « less
  2. Abstract Many problems in combinatorial linear algebra require upper bounds on the number of solutions to an underdetermined system of linear equations $Ax = b$ , where the coordinates of the vector x are restricted to take values in some small subset (e.g. $\{\pm 1\}$ ) of the underlying field. The classical ways of bounding this quantity are to use either a rank bound observation due to Odlyzko or a vector anti-concentration inequality due to Halász. The former gives a stronger conclusion except when the number of equations is significantly smaller than the number of variables; even in such situations, the hypotheses of Halász’s inequality are quite hard to verify in practice. In this paper, using a novel approach to the anti-concentration problem for vector sums, we obtain new Halász-type inequalities that beat the Odlyzko bound even in settings where the number of equations is comparable to the number of variables. In addition to being stronger, our inequalities have hypotheses that are considerably easier to verify. We present two applications of our inequalities to combinatorial (random) matrix theory: (i) we obtain the first non-trivial upper bound on the number of $n\times n$ Hadamard matrices and (ii) we improve a recent bound of Deneanu and Vu on the probability of normality of a random $\{\pm 1\}$ matrix. 
    more » « less
  3. Abstract We generalize the Guth–Katz joints theorem from lines to varieties. A special case says that N planes (2-flats) in 6 dimensions (over any field) have $$O(N^{3/2})$$ O ( N 3 / 2 ) joints, where a joint is a point contained in a triple of these planes not all lying in some hyperplane. More generally, we prove the same bound when the set of N planes is replaced by a set of 2-dimensional algebraic varieties of total degree N , and a joint is a point that is regular for three varieties whose tangent planes at that point are not all contained in some hyperplane. Our most general result gives upper bounds, tight up to constant factors, for joints with multiplicities for several sets of varieties of arbitrary dimensions (known as Carbery’s conjecture). Our main innovation is a new way to extend the polynomial method to higher dimensional objects, relating the degree of a polynomial and its orders of vanishing on a given set of points on a variety. 
    more » « less